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Abstract

The theory of penny-shaped cracks has been the subject of numerous investigations because of its conceptual sim-
plicity and the feasibility of obtaining mathematical solutions. The simplicity of many of the final results makes the
theory useful in many applications. This paper addresses a gap in the theory, the effect of interfacial friction in closed
cracks and, in particular, its influence on the most unstable crack orientation and, hence, the compressive strength of
materials. When friction is accounted for it is found that five types of brittle behavior are possible: (a) mode-I opening,
(b) mixed opening and shear, (c) pure-shear without friction, and (d) shear with interfacial friction. A fifth type of
behavior (e) which corresponds to a stable material response occurs when the compressive traction on the crack is
so large that friction inhibits crack growth. The first four types, namely, (a), (b), (c), (d) result in incipient material fail-
ure. The range of stress states for which each of the failure (incipient) types applies is given explicitly. Failure of a brittle
material under triaxial test conditions is considered in detail to illustrate the results. An experiment performed by Howe
et al. [Howe, P.M., Gibbons, G.G., Webber, P.E., 1985. An experimental investigation of the role of shearing initiation
of detonation. In: Short, J.M. and Deal, W.E. (Eds.), Proceedings of the 8th International Symposium on Detonation,
Albuquerque, NM] showing the response of a brittle material (TNT) to impact illustrates (perhaps surprisingly) behav-
ior of types (c) and (d). The chemical sensitivity of the TNT allows us to observe the effect of friction better than would
be possible in a non-reactive material. The conditions that allow crack growth within the crack plane are discussed
briefly.
� 2004 Elsevier Ltd. All rights reserved.
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1. Introduction

The opening and strain energy of a penny-shaped crack in an infinite elastic medium were determined by
Sack (1946) using oblate spheroidal coordinates, a solution appropriate when the deformation is axisym-
metric. A related discussion by Sneddon (1946) approaches the same problem by means of dual integral
equations and provides detailed information on the state of stress in the neighborhood of the crack tip.
A subsequent paper by Segedin (1950) discusses the same geometry but the prescribed stress on the crack
surface is uniform shear, and results are obtained by a method of ‘‘complex distances.’’ The shear problem
has also been addressed by Ulfyand (1963) using Mehler–Fok transforms. The general case, combining nor-
mal stress and shear, was addressed by Keer (1964, 1966). Different instability criteria were applied,
depending on whether the crack is under tension (open crack) or under compression (closed crack). Fab-
rikant (1989) discusses many more complex aspects of the elastic theory of penny-shaped cracks, such as the
deformation of elastic cracks in an anisotropic solid, under various kinds of loading, and the effect of var-
iations in shape. He uses more elementary methods, arguing that such methods are more natural since the
final results can be expressed with very simple algebraic expressions.
The physical situation is conceptually somewhat simpler for penny-shaped cracks than for two-dimen-

sional cracks because the elastic response can be obtained by combining only two kinds of stress states (nor-
mal and shear), while for two-dimensional cracks Modes I, II, and III are distinguished. None of the papers
cited above discusses the effect of interfacial friction. It is shown here that when friction is accounted for, an
analysis of crack instability shows that there are five kinds of possible response rather than just the two
discussed by Keer (1964, 1966).
The effect of interfacial friction in two-dimensional cracks has been addressed by a variety of authors

who discuss its stabilizing influence. McClintock and Walsh (1962) study the effect of interfacial friction
on the compressive strength of rocks. They assume that all crack orientations are equally likely and that
failure occurs when the maximum local stress near the surface of the crack with the worst orientation
reaches a critical value (the theoretical fracture strength of the material). They show that with a friction
coefficient of unity the predicted compressive strength compares favorably with experimental data for a
variety of rocks under different confining pressures. A good review of the roles of friction and failure sta-
tistics in brittle rapture is given by Alpa (1984), but the current paper differs from his and those referenced
by him in focusing the analysis on penny-shaped cracks under a general, three-dimensional stress state.
The situation is complicated by the possible role of wing cracks, which may form and strongly affect the

behavior of two-dimensional cracks under compression. Wing crack formation may occur in three-dimen-
sional cracks as discussed by Kachanov (1982a,b), but it is not clear that the theory accounts for all possible
modes of behavior. Guiton et al. (2003) assume a distribution of plane penny-shaped cracks and self-similar
(homothetic) growth in their analysis of sedimentary layers. The formation of wing cracks is outside the
scope of this paper, but it may be worth noting that under dynamical conditions shear cracks grow without
the formation of wing cracks as discussed, for example, in recent work by Rosakis (2002) and references
cited therein. The Rosakis paper discusses the formation of a planar melt layer in pseudotachylite that must
have been formed by frictional heating. Wei and De Bremaecker (1994) provide an explanation for the
dichotomy between static and dynamic behavior using energy considerations, as well as the reduced friction
in preexisting cuts compared with that in newly formed crack surfaces. Rice (2000) discusses recent work by
Heaton (1990) and others concerning the propagation of slip in geological faults, which are plane by impli-
cation, and refers to this behavior as self-healing rupture. In impact experiments on cut plates, Kalthoff and
Winkler (1987) show that the cuts tend to extend more nearly in their own plane as impact speed increases,
but the new surfaces may be considered to be shear bands rather that cracks in the classical sense. The rela-
tion of shear bands and shear cracks has not been fully clarified in the literature. The former presumes non-
linear thermo-plasticity and is typically treated as one dimensional, while the latter emphasizes brittle
behavior in two or three dimensions and deals with linear elasticity. In real materials the situation is prob-
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ably more complex than assumed in these idealizations, and may involve both kinds of behaviors where a
brittle–ductile transition occurs. The impact experiments on artillery shells reported by Howe et al. (1985)
show that cracks in TNT can propagate in their own plane, as discussed at the end of this paper. Of course,
the most striking evidence of plane shear cracks is the formation of geological faults, but it may be argued
that these involve preexisting damage.
In this paper, we extend McClintock and Walsh�s work on interfacial friction in two-dimensional cracks

to the failure analysis of brittle materials containing randomly oriented penny-shaped cracks. A general,
three-dimensional loading, including the stress states where the principal stresses have mixed signs, is con-
sidered here, whereas McClintock and Walsh focus on triaxial compressive loading. It is also assumed here
that all crack orientations are equally likely. Failure is assumed to initiate when the crack with the worst
(critical) orientation becomes unstable. For a given stress state, we first find the critical orientation, then
determine the load needed for the crack with that orientation to become unstable. Both open cracks and
shear cracks with interfacial friction are studied. We use an extended Griffith energy-balance criterion
which applies to both open cracks and closed cracks with friction (Dienes, 1983, 1984; Rice, 1984).
We find that for a general three-dimensional stress state, when friction is accounted for, five types of brit-

tle behavior are possible: (a) mode-I opening, (b) mixed opening and shear, (c) pure-shear without friction,
and (d) shear with interfacial friction. A fifth type of behavior (e) occurs when the compressive traction on
the crack is so large that friction inhibits crack growth. The first four types, namely, (a), (b), (c), (d) result in
incipient material failure. The conditions for which each type of behavior applies are determined in terms of
the stress biaxialities. For the stress states where incipient failure is possible, failure (critical crack) orien-
tation is given analytically in the principal basis of the stress tensor.
The failure criteria are discussed in Section 2. The analysis of failure under a general, multi-axial state of

stress is discussed in Section 3 and consists of three cases: Section 3.1, Open cracks, Section 3.2, Closed
cracks and Section 3.3, Pure-shear cracks. The result of Section 3 is a list of candidate orientations for
the critical crack. In Section 4, the candidates are compared to determine which is the most critical and
the failure surface is obtained from failure analysis of the critical crack. This is done for all possible stress
states. In Section 5, as an example, the important special case of triaxial tests (uniform lateral confinement)
is discussed in detail. A summary and conclusions are given in Section 6.
The motivation for this analysis is to clarify the consequences of assuming an ensemble of penny-shaped

cracks, the premise of a variety of modern damage theories obtained by synthesizing damage behavior with
statistical concepts and specific defect theories (e.g., Dienes, 1996; Addessio and Johnson, 1990; Gambar-
otta and Lagomarsino, 1993). Thus, we do not examine possible variations from this premise but, rather,
pursue this single premise in detail with a view to its application in formulating constitutive rules for the
growth of damage.
2. Failure criteria

Consider the behavior of a brittle material containing a random, isotropic distribution of penny-shaped
cracks with radius c subjected to a general three-dimensional loading. Neglecting the interactions between
the cracks, incipient failure is assumed to occur when the crack with the critical orientation becomes unsta-
ble. The instability criterion for a penny-shaped crack, based on the Griffith energy-balance concept,
including the effects of friction for closed cracks, is
F ðr; n; cÞ � f ðr; nÞ � p
2

2� m
1� m

Gc
c

¼ 0; ð1Þ
where r is the remote stress tensor, assumed uniform, n is the unit normal to the crack, the elastic constants
G and m are the shear modulus and Poisson�s ratio, and c is the effective surface energy of the material. The
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stress function f (r,n) depends on whether the crack is open (the normal component of traction is tensile) or
closed (the normal component is compressive and controls the interfacial friction). For an open crack
(rn > 0), both normal and shear stresses contribute to crack instability and the stress function f (r,n) is
(Keer, 1964, 1966)
Fig. 1.
shaped
on cra
The po
f ðr; nÞ ¼ f o ¼ 1� m
2

� �
r2n þ s2n; ð2Þ
where the normal and shear components of the remote traction are
rn � n � rn; sn � ½n � r2n� ðn � rnÞ2	1=2 P 0: ð3Þ

For the sake of compactness, the direct notation (e.g., Marsden and Hughes, 1983) for tensors and vec-

tors is used throughout the paper. For a closed crack (rn < 0), the friction on the crack surface stabilizes the
crack. If the Coulomb friction law is assumed to hold at the surface, then the stress function f(r,n) is (Die-
nes, 1983, 1984; Rice, 1984)
f ðr; nÞ ¼ f s ¼ ðsn þ lrnÞ2Hðsn þ lrnÞ; ð4Þ

where l is the friction coefficient of the material and H is the Heaviside function, unity when the argument
is positive and zero otherwise. A crack is in pure-shear when rn = 0, and Eqs. (2) and (4) both reduce to
f ðr; nÞ ¼ s2n. It has been assumed in applying the instability condition for a penny-shaped crack (Eq. (1))
that the crack growth is homothetic (the crack grows in its own plane and its periphery remains circular).
Though some criteria are known for growth that is not homothetic (e.g., Smith, 1971), they do not account
for interfacial friction. The known differences from the homothetic case are small, on the order of 5%
(Smith, 1971; Mura, 1991).
The crack instability surface F(r,n,c) = 0 in the rn–sn plane is plotted in Fig. 1. It is interesting to note

that the instability surface for a closed crack coincides with the Mohr–Coulomb failure envelope with the
cohesion of the material taken as

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
pð2� mÞGc=2cð1� mÞ

p
. The failure criterion based on the instability con-

dition for a penny-shaped crack provides a justification for the Mohr–Coulomb criterion for brittle mate-
rials and the means to relate the cohesion constant to the defects (crack radius) in the materials. For an
open crack, the instability surface is an ellipse with the major axis along rn, whereas the Mohr–Coulomb
envelope extends to the tensile region with the same slope (the friction coefficient) as in the compressive
The failure surface (defined by the onset of crack instability) for combined shear (sn) and normal (rn) stresses on a penny-
crack with interfacial friction. Note that the result is similar to that for Mohr–Coulomb failure, but here the strength depends
ck dimensions. G denotes shear modulus; m, Poisson�s ratio; c, crack radius; and s0, shear strength. Mohr circles are also shown.
int at rn = 0 includes a range of frictionless shear cracks, discussed in Sections 3.3 and 4.3.
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region. The ellipticity of the surface in the tensile region depends on Poisson�s ratio and is close to zero. The
brittle failure surface used here is an alternative to the Mohr–Coulomb criterion in the tensile stress regime.
For a fixed stress state, the function f (r,n) depends on the crack orientation defined by the normal vector

n. As an example, consider a material subjected to a triaxial compression (uniform lateral confining pres-
sure). The stress state is given by r1 = �p, r2 = r3 = �rp where p is the loading parameter (p > 0) and r is
the stress biaxiality. Let h be the angle the crack normal n makes with the r1 loading direction. Since f (r,n)
is quadratic in the stresses it can be written as f (r,n) = p2g(h, r). For every stress state (fixed value of r),
there is a critical load parameter pcr(h, r) at which the crack with angle h first becomes unstable. The critical
loading is found from Eq. (1) as
Fig. 2.
compr
r = �1
pcrðh; rÞ ¼ ScrðcÞffiffiffiffiffiffiffiffiffiffiffiffiffi
gðh; rÞ

p ; ScrðcÞ �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
p
2

2� m
1� m

Gc
c

r
; ð5a;bÞ
For a given material and maximum crack size c, the critical loading pcr in Eq. (5a) varies with the crack
angle h through the orientation function g(h, r). Fig. 2 shows g(h, r) as a function of h for various values
of the stress biaxiality r between �1 and 0 representing stress states between pure-shear and uniaxial com-
pression. It may be observed that for a given stress state the responses of cracks with different orientations
differ dramatically. The critical orientation at which the orientation function g(h, r) reaches the maximum
changes from 45� for r = �1 (pure-shear) to 64.8� for r = 0 (uniaxial compression). In Fig. 2, the Poisson�s
ratio and friction coefficient of the material are m = 0.2 and l = 0.85.
One can always search numerically through all crack orientations to find the critical crack orientation

for a given stress state, but this requires search through two independent variables (such as the Euler an-
gles), which can be computationally expensive. Furthermore, since the stress state in a material evolves dur-
ing the loading process, one has to conduct the numerical search at every time step. As an alternative, we
present the closed-form expression for the orientation of the critical crack for an arbitrary, three-dimen-
sional stress state. The failure stresses are then found by applying Eq. (1) to the critical orientation.
Effects of crack orientation h on the orientation functions g(h, r), for several different stress states ranging from uniaxial
ession to pure-shear. The critical orientation at which the orientation function g(h,r) reaches the maximum changes from 45� for
(pure-shear) to 64.8� for r = 0 (uniaxial compression). The Poisson�s ratio and friction coefficient are m = 0.2 and l = 0.85.
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3. Failure analysis

For a given loading (i.e., r is fixed), the critical (most unstable) crack orientation ncr is the one that max-
imizes the function f(r,n). Depending on the stress state, the crack with the critical orientation could be
open without shear (mode I), open with shear, closed (with friction), or pure-shear (without friction).
The problem of finding the critical orientation ncr can be conveniently solved in the principal basis of the

stress tensor r. Let r ¼
P
i¼1;3

riei 
 ei where r1, r2, r3 and e1, e2, e3 are the principal stresses and principal

stress directions, respectively, and the symbol 
 denotes the tensor product. The principal stresses are
sorted in descending order (i.e., r1 P r2 P r3). A convenient way of relating rn and sn to the principal stres-
ses and the crack orientation is through the use of Mohr circles. The critical crack orientation corresponds
to the point closest to the crack instability surface, as shown in Fig. 1. Since the Mohr circle for the r1–r3
plane encloses the other two Mohr circles, the closest point to the instability surface must be on this circle,
that is, the critical crack normal lies in the r1–r3 (the maximum and minimum principal stress) plane.
Let h denote the angle between n and the e1 axis (0 6 h 6 p/2). Then the normal and shear components

of the traction are
rn ¼
1

2
ðr1 þ r3Þ þ ðr1 � r3Þ cos 2hð Þ;

sn ¼
1

2
ðr1 � r3Þ sin 2h P 0:

ð6a;bÞ
It follows immediately that r3 6 rn 6 r1. Consequently, cracks can be open only when r1 > 0, closed when
r3 < 0, and in pure-shear when r1 > 0 and r3 < 0.
The target function ~f ðhÞ to be maximized with respect to the crack orientation takes different forms

depending on the sign of rn. For an open crack (rn > 0),
~f
oðhÞ ¼ 1

4
1� m

2

� �
½r1 þ r3 þ ðr1 � r3Þ cos 2h	2 þ ðr1 � r3Þ2sin22h

n o
: ð7Þ
For a closed crack (rn < 0),
~f
cðhÞ ¼ 1

4
ððr1 � r3Þ sin 2h þ l½r1 þ r3 þ ðr1 � r3Þ cos 2h	Þ2

n o
: ð8Þ
The candidates for the critical crack orientation are solved by setting ~f
0ðhÞ ¼ 0. Additionally, there is the

pure-shear crack candidate whose orientation is found from the definition rn(h
s) = 0. In the following three

subsections, we present the expressions for the candidate orientations, according to the status of the critical
crack (open, closed, pure-shear).

3.1. Open crack (rn > 0)

There are two candidate solutions to ~f
0ðhÞ ¼ 0:

3.1.1. Pure-opening

This corresponds to mode-I opening with the crack normal along the maximum principal stress direction
(ho = 0). Substitution of the solution into Eq. (2) gives the value of the stress function as f o ¼ ð1� m=2Þr21.
This open crack candidate exists when r1 > 0.

3.1.2. Open with shear

The orientation of the candidate crack is found to be
hos ¼ 1
2
cos�1

2

m
� 1

	 

1þ r13
1� r13

� �
; ð9Þ
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where r13 � r3/r1 denotes the stress biaxiality. Since �1 6 cos hos 6 1, the mixed-candidate crack exists
only for a limited range of stress states in which the material is in tension–compression
(r1 > 0,r3 < 0),
� 1

ð1� mÞ 6 r13 6 �ð1� mÞ ð10Þ
It was assumed earlier that the crack is open (rn > 0); we now need to confirm that the candidate solution
satisfies the assumptions. With the orientation given in Eq. (9), the normal component of the remote trac-
tion becomes
rn ¼ r1ð1þ r13Þ=m ð11Þ

Since r1 > 0, the candidate crack is open if r13 > �1, namely, r1 needs to be larger than the mag-

nitude of r3. Combined with inequality (10), we find the complete range where this candidate solution
is valid:
�1 < r13 6 �ð1� mÞ: ð12Þ

The corresponding crack orientations at the limits are hos = 45� and hos = 0�, respectively. In terms of the
load angle b � tan�1r13, the range of stress states for a material with Poisson�s ratio m = 0.2 corresponds to
�45� 6 b 6 �38.7�. Substitution of the expression for the candidate orientation into Eq. (7) yields the value
of the target function at the candidate orientation as
f os ¼ f ðr1; r13; hosÞ ¼
2

m
� 1

	 

ð1þ r13Þ2 þ ð1� r13Þ2

� �
r21
4
: ð13Þ
At the lower limit r13 = �1, the function takes the value f ðr1;�1; hosÞ ¼ r21. At the upper limit
r13 = �(1 � m), it follows from Eq. (13) that f ðr1;�ð1� mÞ; hosÞ ¼ ð1� m=2Þr21. Recall that
f o ¼ ð1� m=2Þr21 for the mode-I pure-opening candidate along e1 axis. Hence, at the upper limit
r13 = �(1 � m) where the mixed-mode crack first becomes a candidate, the two candidates are equally crit-
ical, as expected since the mixed-mode crack degenerates to a mode-I crack here with ho = 0�. Since
@f os=@r13 ¼ r21ð1þ r13 � mÞ=m 6 0, we have f os P f o. Therefore, while a mode-I opening crack with the nor-
mal along the e1 axis is always a valid candidate, the mixed-mode candidate is more critical for
�1 < r13 6 �(1 � m), namely when the material is under nearly equal tension–compression loading.
In summary, there are at most two open crack candidates for the critical crack: a pure-opening crack,

and a crack under a combination of opening and shear. The pure-opening candidate exists for all stress
states with r1 > 0. The mixed candidate exists and dominates over a small region in the stress plane where
the tension and compression are nearly equal in magnitude.

3.2. Closed (shear) cracks (rn < 0)

The solution of f 0(h) = 0, with f(h) given by Eq. (8), is
hc ¼ p
4
� 1
2
tan�1l ð14Þ
The same expression was found by McClintock and Walsh (1962) for two-dimensional cracks by maximiz-
ing the local tensile stress around the crack surface. Recall that the failure criterion used here is an extended
Griffith energy criterion (Eq. (1)), and the cracks are assumed to be penny-shaped (three-dimensional). As
we have noted in Section 2, the instability surface for a closed crack coincides with the Mohr–Coulomb
failure envelope; the critical closed crack found here coincides with the failure plane predicted by the
Mohr–Coulomb failure criterion (see, for example, Lubliner, 1990).
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It follows from Eq. (14) that 0 < hc 6 45 �. When the material is subjected to a uniaxial compression, Eq.
(14) predicts that the critical crack plane is tilted toward the loading axis e3. The predicted critical crack
plane becomes more nearly parallel to the loading axis as the friction coefficient l increases, consistent with
the laboratory observed failure mode for brittle materials under uniaxial compression (Dienes, 1983; Schre-
yer and Wang, 1990).
Since we are considering closed cracks, the solution is valid only when the candidate crack is under com-

pression and the applied shear overcomes the interfacial friction, i.e., sn > �lrn > 0. When dealing with
closed cracks, it is more convenient to treat the compressive principal stress (r3) as the primary, and to de-
fine r31 � r1/r3 = 1/r13. Since r3 < 0, with the substitution of the critical crack orientation given in Eq. (14)
into Eq. (6a, b), the condition rn < 0 is found to require
r31 > �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ2 P �1: ð15Þ
That is, if the maximum principal stress is tensile, the magnitude has to be somewhat less than the magni-
tude of the compressive principal stress.
Similarly, the requirement sn > �lrn yields
r31 < ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ2 6 1: ð16Þ
Thus, the two principal stresses have to differ enough to produce sufficient shear to overcome the friction
on the crack surface. Combining inequalities (15) and (16) gives the range of stress states for which there
exists a closed crack that is potentially unstable (it becomes unstable when the applied load is sufficiently
large) as
�ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ2 < r31 < ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ2: ð17Þ
That is, a closed crack with interfacial shear is a valid candidate when the stress state falls into a sector
centered about uniaxial compression along the e3 axis. The size of the sector decreases with the friction
coefficient l. For l = 1.0, the range is �0.17 < r31 < 0.17 (�9.7� < b31 < 9.7�, in terms of the load angle,
b31 � tan�1r1/r3). By substituting the expression for the critical crack orientation given by Eq. (14) into
Eq. (8), the corresponding target function is found to be
f c � f ðr3; r31; hcÞ ¼
r23
4
fð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
þ lÞr31g2: ð18Þ
3.2.1. Friction-locked zone

When both principal stresses are compressive, all cracks are closed and there exists a range of stress
states over which the cracks are always stable (locked) due to frictional resistance on the crack surface.
The friction-locked zone, in terms of the range of stress biaxiality, is determined by the requirement
sn 6 �lrn, and may be inferred from Eq. (16) to be
ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ2 � rL 6 r31 6 1: ð19Þ
The size of the friction-locked zone can be better represented by the load angle (b31 is measured from
the uniaxial compression axis along the direction of r3). Let �b � tan�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
þ lÞ2 � p=4. Then it

follows from Eq. (19) that rL ¼ tanðp=4� �bÞ, so the wedge of size �b starting from the bisector
r1 = r3 < 0 represents the friction-locked zone in stress space. For l = 1.0, the lock angle is
�b ¼ 35:3�. Fig. 3 shows the lock angle �b as a function of the friction coefficient l. The angle �b starts
at 0 � when the material is frictionless (hence any deviation from the hydrostatic compression can
render some crack unstable when the load parameter is sufficiently large) and asymptotically ap-
proaches the limit of 45�; that is, if the friction coefficient is large enough nearly all cracks are stable
when both principal stresses are compressive.



45

30°

15

0
0 0.5 1 1.5 2 2.5 3

β

µ

Fig. 3. Effects of friction coefficient, l on the size of the friction-locked zone, �b. When the stress state falls inside a sector centered
about hydrostatic compression state with size 2�b, all cracks are stable because the interfacial friction exceeds the applied shear. The
lock-angle �b starts at 0� for l = 0, and asymptotically approaches the limit 45� for large values of l.
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3.3. Pure-shear cracks (rn = 0)

Since r3 6 rn 6 r1, a non-trivial solution exists if and only if the principal stresses have mixed signs,
r1 > 0, r3 < 0. The solution of the constraint equation rn(h

s) = 0 is
hs ¼ tan�1ð1= ffiffiffiffiffiffiffiffiffiffi�r13
p Þ: ð20Þ
In general, this orientation does not correspond to the maximum shear plane, which is always at 45� from
the principal stress axes. For the special situation when the material is under pure-shear, r3 = �r1 < 0, Eq.
(20) gives hs = 45�. The shear component on the crack surface is sn ¼ 1=2ðr1 � r3Þ sin 2hs ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffi�r13r1
p

, and
the corresponding value of the target function is
f s � s2n ¼ �r13r21 ¼ �r1r3 > 0 ð21Þ

This pure-shear candidate crack exists for all tension–compression stress states (r1 > 0, r3 < 0).
In summary, depending on the stress state, the candidates for the critical crack may be (a) pure-opening

(mode-I), (b) mixed opening and shear, (c) pure-shear, and (d) shear with interfacial friction. Next, we will
compare the values of the target functions corresponding to the candidate orientations to determine which
is the critical crack. This will be done for all possible stress states.
4. Critical crack orientation and failure surface

Depending on the stress state, there can be several candidates for the critical crack with different orien-
tations; the one with the largest value of the target function is the critical one. The failure stress is then
determined by substituting f(r,ncr) into Eq. (1). In what follows we will divide the stress states into various
regions and give the corresponding failure surfaces.
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4.1. r1 P r2 P r3 P 0

The material is under pure tension, so the only candidates are the mode-I cracks with normal along the
principal stress directions. Hence the critical crack normal is ncr = e1, associated with
f crðr; e1Þ ¼ ð1� m=2Þr21. Substitution of the expression for f into Eq. (1) gives the tensile failure surface
F oðr; cÞ � r1 �
Scrffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m=2

p ¼ 0 ð22Þ
with Scr(c) defined in Eq. 5a, b(5b). Hence, when under pure tension a brittle material fails when the max-
imum principal (tensile) stress reaches a critical value, which is the Rankine tensile failure criterion.

4.2. r3 6 r2 6 r1 6 0

The material is under pure compression and the cracks are either friction-locked (hence stable) when the
principal stresses are sufficiently close (i.e., ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ2 6 r31 6 1Þ, or potentially unstable when the dif-

ference between shear and interfacial friction on some crack becomes large enough. For
r31 < ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ2, there is one candidate closed crack with the orientation given by Eq. (14). The failure

surface is found by substituting the expression for the target function in Eq. (18) into Eq. (1), and can be
written, in terms of the principal stresses, as
F cðr; c; lÞ � r3 � ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
þ lÞ2r1 þ 2ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
þ lÞScr ¼ 0: ð23Þ
The surface coincides with the Mohr–Coulomb surface. The size of the failure surface (distance from the
surface to the origin) increases with the friction coefficient and decreases with the radius of the largest crack
in the material. In the r1–r3 plane the slope of the failure surface increases with the friction coefficient. The
compressive strength of the material is found by setting r1 = 0 in Eq. (23)
rc ¼ jr3j ¼ 2ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
þ lÞScr: ð24Þ
It follows from substituting Eq. (22) and Eq. (24) that the ratio of the compressive strength to the tensile
strength is
rc
rt

¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2ð2� mÞ

p
ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
þ lÞ: ð25Þ
Dienes (1983) found the critical crack orientation and the strength under uniaxial compression. Eq. (25)
reproduces those results. However, here, Eq. (23) applies to a general state of stress, not just uniaxial com-
pression. It is interesting to note that the critical crack orientation depends on the friction coefficient of the
material, but not on the stress biaxiality (provided it is within the range given by Eq. (17)). The critical
stress, on the other hand, increases with both the friction coefficient and the stress biaxiality.

4.3. r1 > 0,r3 < 0

Material is under tension–compression. This is the most interesting situation; there are at least two can-
didates (pure-opening and pure-shear) in this region of the stress state, and in certain sub-regions there is
another candidate, either the mixed open and shear or shear with friction. We divide the solutions into two
major groups, according to the relative magnitudes of the principal stresses.

4.3.1. r1 P �r3 > 0 (�1 < r13 6 0)

Since the principal stresses are of mixed signs, there are always two candidates, a pure-opening candidate
crack with normal parallel to the e1 axis with f o ¼ ð1� m=2Þr21, and a pure-shear candidate crack with ori-
entation given by Eq. (20) and f s ¼ �r13r21 ¼ �r1r3.
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4.3.1.1. �(1 � m) 6 r13 6 0. The pure-opening and pure-shear cracks are the only candidates, and the crit-
ical one is the pure-opening crack with the failure surface given by Eq. (22). That is, the mode-I opening
failure mode extends well into the tension–compression region.

4.3.1.2. �1 6 r13 6 �(1 � m). In this region, there is also a mixed opening and shear candidate. It is
straightforward to verify that among the three candidates the mixed one is the most critical, with the ori-
entation given by Eq. (9) and failure surface given by
F osðr; cÞ � 2

m
� 1

	 

ðr1 þ r3Þ2 þ ðr1 � r3Þ2

� �
� 4S2cr ¼ 0 ð26Þ
The failure surface has an elliptical cross-section in the principal stress space.

4.4. 0 6 r1 6 �r3 (�1 < r13 6 �1)

Material is under tension and compression, with compression dominating. In this region, there are again
at least two candidates; pure-opening crack with the normal in the direction of the e1 axis and
f o ¼ ð1� m=2Þr21, and pure-shear crack with f s ¼ �r13r21 ¼ �r1r3. Since r13 6 �1, it follows immediately
that f s P r21 > f o, i.e., the pure-shear candidate is always more critical than the pure-opening candidate.
This region is further split into two sub-regions:

4.4.1. �

 ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ 1
p

þ l
�2

6 r13 6 �1

Here, the only candidates are the two discussed above and the pure-shear candidate is the more critical.
The failure surface is given by
F psðr; cÞ ¼ �r1r3 � S2cr ¼ 0: ð27Þ

The failure surface has a hyperbolic cross-section in the principal stress space.

4.4.2. �1 6 r13 6 �

 ffiffiffiffiffiffiffiffiffiffiffiffiffi

l2 þ 1
p

þ l
�2

Since the stress state is close to uniaxial compression, it is more convenient to work with r31 = 1/r13 (see
Section 3.2.). In this region, in addition to the two candidates discussed above, there is also a frictional-
shear candidate, with the target function f c ¼ r23=4ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� l � ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
þ lÞr31Þ2. At the lower limit

r31 ¼ �ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ2, f s ¼ �r1r3 ¼ �r31r23 ¼ r23ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ2 ¼ f c, so the two candidates are equally

critical. At the upper limit r31 = 0, we have f s = 0 and f c ¼ r23=4ð
ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ2 > f s. It can be readily

shown that in this region of stress states the frictional-shear candidate is more or equally critical than
the pure-shear candidate (f c P f s). The failure surface is given by Eq. (23).
In summary, the critical crack can be one of four types, namely, pure-opening, mixed opening and shear,

pure-shear, or frictional shear, depending on the stress biaxiality. The corresponding failure (incipient) sur-
face is given by one of Eqs. (22), (23), (26), and (27).
Similar failure surfaces were presented by Alpa (1984) for plane stress loadings. His results were based

on the geometrical considerations of the limit domains in the Mohr plane. The detailed stability analysis of
penny-shaped cracks under a general, three-dimensional stress state presented here elucidates our under-
standing of the various types of brittle behavior. Furthermore, while no explicit mention of the critical
crack orientations was given in Alpa�s work (though it can be inferred in some cases), we have presented
explicit expressions for the critical crack orientation under all possible stress states. These expressions
are useful in formulating a computer algorithm that accounts in detail for the accumulation of damage
(Dienes et al., 2003).
An example of material behavior under triaxial loading is discussed in the next section to illustrate the

results presented above.
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5. Triaxial (tension/compression) test

As an example, let us now consider the failure of a brittle material under triaxial stress loading (the radial
stresses are held equal during the test, r22 = r33). Let r11 = p cosb and r33 = p sinb denote the axial and
lateral stresses, respectively, where p > 0 is the loading parameter and the load angle b defines the state
of stress in the material (�p 6 b 6 p). Since the shear components vanish we have r1 = r11,
r2 = r3 = r33 for �3p/4 6 b 6 p/4, and r1 = r2 = r22, r3 = r11 for p/4 6 b 6 p or �p 6 b 6 �3p/4. It is
noted that b = p and b = �p both represent uniaxial compression along the axial (r11) direction, and
the descending ordering of the principal stresses r1 P r2 P r3 is maintained. Due to the symmetry of load-
ing, all cracks having the same angle with the axial loading (r11) axis respond equally to the applied stress.
Hence, the failure orientation (the normal to the critical crack) can only be determined within a cone cen-
tered along the r11 axis. Let h be the angle the normal to the critical crack makes with the r11 axis. We will
study the effects of stress state on the failure angle h. To study all possible stress states, one needs to probe
through the range of load angle, �p 6 b 6 p. However, due to symmetry of the problem, we can limit our
discussions to �3p/4 6 b 6 p/4 (r1 = r11 P r3 = r33). Then b = 0 corresponds to uniaxial tension in the
axial direction and b = �p/2 corresponds to compression in the radial direction. Failure criteria for the
remaining stress states can be inferred from those results.

5.1. �3p/4 6 b 6 �p/4

In this region, the magnitude of the compressive stress is larger than the tensile stress (�r3 P r1) and the
critical crack type is either pure-shear or shear with interfacial friction. This region can be further divided
into three sub-regions. (1) �3p=4 6 b < �3p=4þ �b where �b is the size of the friction-locked zone defined
earlier. Here, all cracks are stable due to interfacial friction, and consequently, no failure surface exists in
this region. (2) �p/2 � bs 6 b 6 �p/2 + bs with bs � tan�1ð

ffiffiffiffiffiffiffiffiffiffiffiffiffi
l2 þ 1

p
� lÞ2 ¼ p=4� �b. In this region, shear

in the material is large enough to overcome the frictional resistance and the critical crack is a frictional
shear crack. It follows from the definitions that �3p=4þ �b ¼ �p=2� bs so there is no gap between the fric-
tion-locked zone and the frictional shear failure region. The failure angle is given by Eq. (14), and the cor-
responding failure surface is given by Eq. (23). (3) �p/2 + bs

6 b 6 �p/4. The critical crack is a pure-shear
crack, with the failure angle h given by Eq. (20) and the failure surface given by Eq. (27).

5.2. �p/4 6 b 6 p/4

Here, the tensile principal stress is larger than the magnitude of the compressive principal stress
(r1 P �r3) and the critical crack type is either pure-opening or mixed opening and shear. This region
can further divided into two sub-regions: (1) �p/4 6 b 6 �bo, where bo � tan�1(1 � m). The critical crack
type is mixed opening and shear. The failure angle h is given by Eq. (9), with the corresponding failure sur-
face given by Eq. (26). (2) �bo 6 b 6 p/4. The critical crack type is pure-opening with the normal in the
axial loading (r11) direction (h = 0

0) and tensile-failure surface given by Eq. (22). At b = p/4, r3 = r1,
the state of stress is hydrostatic and there is no unique critical orientation.
Fig. 4 plots the failure angle h as a function of load angle b over the complete range of b (�p 6 b 6 p)

for several values of the coefficient of friction between 0 and 2.0. The figure starts from the left with a uni-
axial compression in the r11 direction (b/p = �1) and since r11 is the minimum stress r3 = r11, the failure
angle with the loading direction is 90� � hc with hc given by Eq. (14), in agreement with a previous result
(Dienes, 1983). It may be observed that friction has a significant effect on failure orientation. For a friction-
less material, the critical crack plane is the maximum-shear plane, which corresponds to h = 45�. As l in-
creases, the failure angle increases so that the failure plane becomes increasingly parallel to the loading axis.
At l = 2.0, the failure plane is at 75� to the axial loading direction. In laboratory tests, it is often observed



Fig. 4. Failure angle as a function of load angle for triaxial loading for several values of friction coefficient, l. The nine regions are
described in the text (the regions just above b = �p and just below b = p are considered as one region which represents nearly uniaxial
compression). Proceeding from the left the types of failure are: axial splitting (shear with friction), friction-locked, radial splitting,
pure-shear, mixed opening and shear, axial tensile failure, radial tensile failure, opening with shear, and pure-shear.
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that brittle materials such as rocks and concretes display cracks almost parallel to the loading direction
when subjected to a uniaxial compression (Dienes, 1983). This has also been observed in a brittle explosive
(TNT) subjected to plate impact (Howe et al., 1985) as shown in Fig. 7.
As the load angle b increases from �p, the stress state changes from uniaxial compression to triaxial

compression with increasing lateral confining stress. Fig. 4 shows that for a certain range of lateral confin-
ing pressure the failure type (shear with friction) and orientation remain the same as for uniaxial compres-
sion. The range depends on the coefficient of friction. Further increase in the confining stress stabilizes all
cracks, as the material enters the friction-locked zone. For �p 6 b 6 �p/2, the curves are symmetrical
about the hydrostat (b = �3p/4). Hence, the failure is again controlled by a shear crack with friction when
the friction-locked zone ends. The critical crack plane is now tilted away from the r11 axis since the lateral
confining stress (r33) now becomes increasingly dominating for �3p/4 6 b 6 �p/2. At b = �p/2, the mate-
rial is under equal-biaxial compression in the r22–r33 plane, which is equivalent to uniaxial compression
along the r33 direction for cracks with normal in the e1–e3 plane. Hence the failure angle with the e1 axis
is just hc, as expected.
As b increases beyond �p/2, the stress state in the material becomes tension–compression (r1 = r11 > 0,

r3 = r33 < 0). The failure type at first remains shear with friction until the tensile stress component reaches
a critical value at which the type transitions to pure-shear. The failure type remains pure-shear until
b = �p/4. Between the termination of pure-shear failure and the beginning of pure-opening, there exists
a small region where the type of failure is mixed opening and shear. The failure angle during the transition
from pure-shear failure to a pure-opening (mode-I) failure is not smooth. The critical angle ho given by Eq.
(9) drops rapidly from 45� to 0� over a small range of load angles (�45� 6 b 6 �bo; bo = 38.7� for m = 0.2).
Then for b P �bo, the failure angle remains at 0� (pure mode-I opening) until b = p/4 and then changes to
90� as r33 becomes the dominant tensile stress. The behavior of the remaining portion of the curves (p/
4 6 b 6 p) is to be expected based on the assumption of an isotropic distribution of random cracks in
the material.
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The corresponding failure surfaces are shown in Fig. 5, where the axial and radial applied stresses are
normalized with respect to the tensile strength of the material (Saa � raa/ro; ro � ScrðcÞ=

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� m=2

p
). It is

shown that when the material is in a tension-dominated regime the current failure surface reduces to the
maximum tension failure (Rankine) criterion, which is appropriate for a brittle material under tension.
When compressive stress becomes dominant, the size of the failure surface increases with pressure and fric-
tion coefficient of the material, reproducing the Mohr–Coulomb failure surfaces. The failure surface tran-
sitions smoothly from the mode-I tensile failure to frictional shear failure. In this transition region, the
material is under both tension and compression and fails by either a combination of mixed opening and
shear, or pure-shear. These features seem to capture the failure of brittle materials under triaxial loading.
The upper limit of l = 2.0 is chosen because the failure surfaces have reached their asymptotes there. In
Fig. 5, we have terminated the failure surfaces in the compression region at p = 5ro in order to show
the features of both tensile and compressive failure. The actual failure surfaces are open-ended. In both
Figs. 4 and 5, the Poisson�s ratio is taken to be m = 0.2.
Fig. 6 is a diagram showing the various types of behavior that are possible in a brittle material under

triaxial loading. There are five essentially different types. While the stress plane is divided into nine parts,
symmetry reduces the essentially different kinds of behavior to five. Incipient failure is possible for suffi-
ciently large stresses in any of the five segments except for the shear-locked zone where cracks are locked
in compression. The value l = 2.0 is chosen here because this is our estimate of the typical friction coeffi-
cient in clean microcracks where there may be significant cohesion. Direct evidence for this behavior can be
seen in the photographs and micrographs of damaged TNT presented by Howe et al. (1985). TNT is a good
indicator of brittle behavior because the effects of frictional heating are easily observed. Pure-shear cracks
(type (c)) can be observed in one portion of the target, while the effects of reaction caused by friction, a
behavior of type (d), are observed in a different section, as shown in Fig. 7. The sketch shows the actual
cracks formed by impact of a flyer plate against the side of an artillery shell at 440m/s. The filler explosive
Fig. 5. Failure surfaces of a brittle material under triaxial loading for several values of friction coefficient, l, from 0 to 2.0. Note that
friction has no effect on the tensile failure, and that the compressive strength increases with pressure and friction coefficient. The
surfaces nearly reach their asymptote at l = 2.0.



Fig. 6. A diagram showing the five types of response a brittle material can have under triaxial loading (r11 and r33 denote the axial and
lateral stresses, respectively). For sufficiently high stress, axial and radial mode-I tensile failure can occur when tensile stress dominates
(Type (a)); mixed opening and shear failure occurs over a small sector of the load angle (Type (b)); pure-shear (no normal traction)
failure occurs for a range of stress states that can be significant if l is large (Type (c)); ‘‘Splitting’’ occurs where the critical crack plane
is nearly aligned with the greatest compression direction (Type (d)). A fifth type of response occurs when the stress state is sufficient
close to hydrostatic compression so that the interfacial friction on a crack surface always exceeds the applied shear and as a result
cracks are ‘‘friction-locked’’ (Type (e)).

Fig. 7. A sketch showing the actual cracks formed by a flyer-plate impact at 440m/s against the side of an artillery shell filled with
TNT, as report by Howe et al. This illustrates the two types of shear cracks discussed on the text.
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is TNT, a brittle material that is very sensitive to temperature. A micrograph of the long cracks at 45� to the
impact direction shows no evidence of heating or reaction, though a shearing discontinuity is clearly evi-
dent. The short cracks show evidence of carbon formed by local heating. The sketch is a composite of
two nearby sections of the shell that were carefully polished. A similar test at 680m/s resulted in a violent
explosion.
As an application of the instability criteria for penny-shaped cracks under combined normal and shear

loadings, Keer (1966) generated the failure (fracture) surface for a brittle material under a biaxial state of
stress which qualitatively agreed with experimental results for gray cast iron previously reported (reference
cited in the paper). Since the effects of friction on crack instability were not accounted for, when the com-
pressive stress is dominant the critical crack is always at 45� from the principal stress directions (the max-
imum shear plane) and the failure surface is parallel to the hydrostat. His results agree with the current
work for l = 0, both in the failure orientations and the failure surface. However, the current work shows
that for a frictional material there are several types of compressive behavior (pure-shear, shear with friction,
friction locked), and the failure surface expands with increasing hydrostatic pressure and friction
coefficient.
6. Summary and conclusions

We have presented an investigation of the effect of interfacial friction in penny-shaped cracks and, in
particular, its influence on the most unstable crack orientation. The material is assumed to contain a ran-
dom, isotropic distribution of penny-shaped cracks. Incipient failure is said to occur when the largest crack
with critical orientation becomes unstable. When friction is accounted for it is found that, depending on the
stress state, five types of brittle behavior are possible: (a) mode-I opening, (b) mixed opening and shear, (c)
pure-shear without friction, and (d) shear with interfacial friction. A fifth type of behavior (e) occurs when
the compressive traction on the crack is so large that friction inhibits crack growth. The first four types,
namely, (a), (b), (c), (d) result in material failure at sufficiently high stresses. We also give analytical expres-
sions for the failure (critical crack) orientations in the principal stress basis.
When all the principal stresses are tensile, the critical crack normal aligns with the largest principal stress

direction and the failure type is mode-I opening. When the material is completely under compression (all
three principal stresses are compressive), the failure mode is always shearing with friction (but failure may
not occur if the cracks are locked by friction). The most interesting case is when the principal stresses are of
mixed signs. Here the failure type can be mode-I opening when the tensile stress dominates, or a combina-
tion of opening and shear when the magnitude of the compressive stress is less than but close to that of the
tensile stress, or pure-shear when the compressive stress is larger than the tensile stress or, finally, shear with
friction when the state of stress is close to uniaxial compression. For materials with high friction coefficient
the pure-shear failure mode dominates over quite a sizable range of stress states.
We have also presented the failure surfaces in terms of the principal stresses. There are four surfaces and,

depending on the stress state in the material, one of them will apply. The conditions for the applicability of
the failure surfaces are also given explicitly in terms of the stress biaxialities. When the failure is controlled
by a tensile or frictional crack, the failure surfaces are straight lines in the plane of maximum–minimum
principal stresses. On the other hand, when the type of failure is pure-shear or mixed opening and shear,
the surface is a segment of either a hyperbola or ellipse.
For materials with friction, there exists a range of compressive stress states over which shear cannot

overcome friction. For those stress states, all cracks (hence the material) remain stable. We have presented
the size of this ‘‘friction-locked zone’’, in terms of the load angle, as a function of the friction coefficient.
As an example, we have shown the failure orientation and failure surface of a brittle material under tri-

axial loading to illustrate the general framework presented in this paper. One perhaps surprising result is
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that pure (frictionless) shear failure occupies a significant fraction of the stress states when the principal
stresses are of mixed signs. This may explain one result of Howe et al. (1985) which shows damaged
TNT (brittle explosive) recovered and polished following an impact test. Large cracks oriented at close
to 45� to the impact direction are clearly shear cracks (no crack opening can be detected), but there is
no evidence of melting or reaction (Fig. 7). Thus, there is clear evidence that friction is negligible, as would
be expected when a pure-shear crack dominates. This, perhaps, provides an illustration of the pure-shear
cracks expected from the theory, though the experiment involves a rather more complex stress history than
the theory described here. On the other hand, cracks near the impact area show strong evidence of reactions
because their orientation is nearly parallel to the impact direction, an unstable orientation according to our
analysis for nearly uniaxial compression, and one that involves significant friction.
The interest in penny-shaped cracks stems in large part from their role in the construction of constitutive

models for the behavior of brittle and quasi-brittle materials. For example, Dienes (1981) used such a model
to explain the formation of an aspirin-shaped cavity in oil shale, a result of bedding cracks, as well as
accounting for the impact sensitivity of a propellant (1996) and impact damage to alumina (Meyer
et al., 1999). Addessio and Johnson (1990) modeled damage in ceramics (silicon carbides, boron carbides,
titanium diborides) under impact condition. Their predictions compared favorably with shock compression
and release experiments. Gambarotta and Lagomarsino (1993) succeeded in representing the brittle behav-
ior of concrete during both loading and unloading. Bennett et al. (1998) modeled the dynamic response of
an explosive by this means, and Guiton et al. (2003) accounted for the folding of sedimentary layers with
such an approach. This list is not exhaustive. Additional work with such approaches is given in the refer-
ences cited in these papers.
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